5 research outputs found

    A Survey on Semantic Communications for Intelligent Wireless Networks

    Get PDF
    With deployment of 6G technology, it is envisioned that competitive edge of wireless networks will be sustained and next decade's communication requirements will be stratified. Also 6G will aim to aid development of a human society which is ubiquitous and mobile, simultaneously providing solutions to key challenges such as, coverage, capacity, etc. In addition, 6G will focus on providing intelligent use-cases and applications using higher data-rates over mill-meter waves and Tera-Hertz frequency. However, at higher frequencies multiple non-desired phenomena such as atmospheric absorption, blocking, etc., occur which create a bottleneck owing to resource (spectrum and energy) scarcity. Hence, following same trend of making efforts towards reproducing at receiver, exact information which was sent by transmitter, will result in a never ending need for higher bandwidth. A possible solution to such a challenge lies in semantic communications which focuses on meaning (context) of received data as opposed to only reproducing correct transmitted data. This in turn will require less bandwidth, and will reduce bottleneck due to various undesired phenomenon. In this respect, current article presents a detailed survey on recent technological trends in regard to semantic communications for intelligent wireless networks. We focus on semantic communications architecture including model, and source and channel coding. Next, we detail cross-layer interaction, and various goal-oriented communication applications. We also present overall semantic communications trends in detail, and identify challenges which need timely solutions before practical implementation of semantic communications within 6G wireless technology. Our survey article is an attempt to significantly contribute towards initiating future research directions in area of semantic communications for intelligent 6G wireless networks

    Qualitative survey on artificial intelligence integrated blockchain approach for 6G and beyond

    No full text
    Abstract Utilizing the 0.1 to 10 THz spectrum in the next-generation wireless communication networks holds potential for futuristic applications. However, managing resources to accommodate numerous devices raises privacy and security concerns. Further, technology proliferation entwines devices, infrastructure complexity, and resources. Indeed, the transition from 5G (fifth-generation) to 6G (sixth-generation) signifies a progression towards high-speed data rates, minimal latency, and seamless integration of artificial intelligence, enabling ground-breaking applications and services. However, it complicates network management, privacy, resource allocation, and data processing. Notably, integrating Blockchain Technology (BCT) and Machine Learning (ML) is a promising solution, enhancing security, decentralization, trust in ML decisions, and efficient data sharing. This survey thoroughly reviews the integrated ML and BCT, showcasing their collaborative enhancement of network security, decentralization, trust in ML decisions, immutability, and efficient model sharing. Furthermore, we also delve into various distinctive topics, such as BCT-enabled spectrum refarming, rate splitting multiple access, 6G radar-based communication, reconfigurable intelligent surfaces, visible light communication, and integrated sensing and communication. Moreover, it also explores the integration of ML and BCT in novel 6G communication technologies, including molecular, holographic, and semantic communication. Finally, critical open issues, challenges, solutions, and futuristic scope are identified for forthcoming researchers
    corecore